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Abstract

The stress and displacement solutions are obtained for an elastic/viscoelastic joint subjected to a surface traction
in the vicinity of an interface corner using elastic±viscoelastic correspondence principles and existing corresponding

solutions for elastic/elastic joints. The intensity of the resulting stress singularity is determined by a combination of
asymptotic analysis and the ®nite element method. A quasi-static assumption is used to investigate the e�ects of
sliding and rolling contact loads near the interface corner on failure initiation. The results suggest the interface may

experience stress reversal as the contact load (normal or shear) moves from one side of an interface corner to the
other, leading to the possibility of fatigue failure. Further a relaxation or an increase of the interfacial stresses
occurs depending on whether the edge load near the interface corner is on the elastic or viscoelastic side of the joint.

The implications of the results in predicting the deformation and failure of asphalt concrete used in highway bridges
are discussed. 7 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Stress singularity; Bonded joints; Failure initiation; Fatigue; Viscoelasticity

1. Introduction

It is well known that cracks initiate at the surface of brittle monolithic solids under rolling and/or
sliding contacts because of the large tensile stress that exists near the surface (Suh, 1986). The magnitude
of the tensile stress increases with increasing magnitude of the contact loads, and rapidly decreases with
increasing distance away from the contact, suggesting a local e�ect. In this paper we examine the role of
the near-surface stresses in the vicinity of an interface corner in controlling the initiation of failure in
elastic/viscoelastic joints subjected to an edge traction. Here an interface corner is the intersection of the
interface between bonded materials and the unbonded boundaries of the materials.
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Many modern engineering structures and components contain adhesively bonded and/or welded joints
because they give a more uniform load distribution in comparison to other mechanical connectors. In
some applications, the joints are subjected to surface traction resulting, for example, from contacts
(sliding or rolling) with other components. Depending on the elastic and thermal properties of the
bonded materials and the joint geometry, a stress singularity may develop at the interface corner. A
detailed description of the di�erent possible types of singularity at the interface corner of elastic bi-
material wedges subjected to a surface traction has been given by Bogy (1970, 1971). One of the types of
singularity is of the form H rlÿ1 �0:5RlR1� where r is the radial distance from the interface corner, H
is the edge intensity factor and �lÿ 1� is the order of the stress singularity. l depends on the material
elastic properties and the joint geometry; typical values of l are available in the literature, see for
example Bogy (1970, 1971). The evaluation of the order of the stress singularity �lÿ 1� for elastic/elastic
joints and its role in in¯uencing failure initiation is now well established.

The magnitude of the intensity H depends on the material properties, the joint geometry and the
magnitude of the applied load. The values of both H and l are needed to fully describe the stress and
displacement ®elds near the singular point. The need to develop an edge failure initiation criterion has
led to recent interests in the evaluation of H for a number of joint geometries and load cases (Wang and
Choi, 1982; Munz and Yang, 1992; Reedy, 1993; Akisanya and Fleck, 1997; Qian and Akisanya, 1999).
Two di�erent criteria have been proposed for the prediction of failure initiation at sharp wedges/notches
and at interface corners. In the ®rst criterion, failure initiation at interface corners or sharp notches,
assuming small scale yielding near the corner, occurs when the magnitude of H attains a critical value
(Gradin, 1982; Reedy, 1990; Qian and Akisanya, 1998a). The application of such a criterion has been
hindered to some extent by the fact that the units of H are of the form (stress)�length�1ÿl, and hence
depends on the local wedge angles and the elastic properties of bi-material joints.

Sih and Ho (1991) have proposed an alternative criterion where failure initiation occurs when the
strain energy density at a point ahead of the notch attains a critical value. This criterion has been
successfully used to predict the onset of failure and the initiation angle at the tip of notches in
monolithic materials. Although the units of the strain energy density is independent of the wedge angle,
the evaluation of the strain energy requires a knowledge of both H and l, since both the stresses and the
strains depend on these two parameters.

While the values of l and H have been evaluated for a number of load cases and elastic/elastic joint
geometries, similar analysis for elastic/viscoelastic joints has received relatively little attention. Many
adhesives have viscoelastic properties and a signi®cant number of bonded joints are used in elevated
temperature applications where time-dependent deformation may occur in some of the materials. Since
the mechanical properties of viscoelastic materials are time-dependent, the order of the singularity in
elastic/viscoelastic and viscoelastic/viscoelastic joints is also time-dependent. Therefore, the relaxation of
the edge stresses (at a constant applied strain) or the increase in deformation (at a constant applied
load) in these material combinations will depend on the evolution of the order of the singularity and the
intensity H.

Delale and Erdogan (1981) have shown that a relaxation of the edge shear stresses with increasing
time occurs in an elastic/viscoelastic single lap joint subjected to a remote bending or transverse shear.
Although the magnitude of the edge stresses are much higher than the magnitude of the corresponding
stresses further away from the interface corner, no stress singularity was predicted because of the
inherent plate theory assumptions in their analysis. Blanchard and Ghoniem (1989) extended the earlier
singularity analysis for elastic/elastic joints presented by Bogy (1970, 1971) to viscoelastic materials. The
order of the stress singularity and the edge intensity factor were determined as functions of time for
viscoelastic/viscoelastic quarter planes (i.e. butt joints) subjected to a uniform change in temperature.
The order of the singularity is independent of time when the two materials have identical relaxation
times and time-independent Poisson's ratios.
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More recently, Lee (1997, 1998) used Laplace transform technique together with the boundary
element method to determine the order and intensity of the edge stress singularity for elastic/viscoelastic
and rigid/viscoelastic quarter planes subjected to remote transverse tensile strain. By assuming a time-
independent bulk modulus for the viscoelastic material, the analysis of the rigid/viscoelastic joint is
signi®cantly simpli®ed since the solutions then depend only on the Poisson's ratio of the viscoelastic
material. The analysis of the elastic/viscoelastic quarter plane, was also simpli®ed by assuming a time-
independent Poisson's ratio of the viscoelastic material (Lee, 1997). In both analyses, the intensity of the
edge singularity was determined by comparing the interfacial stresses at a given time obtained from the
numerical analysis with the corresponding asymptotic solution.

In this investigation, we determine the stress and displacement ®elds near the interface corner of an
elastic/viscoelastic sandwiched joint subjected to edge traction in the vicinity of the interface corner. The
stress and displacement solutions are obtained for cases where the edge traction (normal or shear) is
applied only to one of the materials at any given time. The load is ®rst applied to one of the materials
in the vicinity of an interface corner while the other is left traction-free. Once the solutions to this
particular load case have been obtained, the analysis is repeated with the load transferred to the
material that was initially traction-free, while the originally loaded material is now traction-free. This
quasi-static approach to the loading is used to examine the evolution of the edge stresses as the load
moves from one side of the interface corner to the other, and therefore, mimics a sliding and/or rolling
contact loading near the corner. The magnitude of the edge intensity factor H is determined as a
function of time, edge loading and joint geometry.

Although the current analysis of the elastic/viscoelastic joint is di�erent from that of Lee (1997), the
results are complementary to those of Lee (1997). We have assumed a time-dependent Poisson's ratio of
the viscoelastic material and the e�ects of the joint geometry have also been examined. In addition, the
intensity of the singularity has been evaluated using an integral method, which has been shown by Qian
and Akisanya (1998b) to be more accurate and relatively mesh insensitive compared to the method used
by Lee (1997).

The structure of the rest of the paper is as follows. First, some essentials of the existing solutions for
elastic/elastic joints are reviewed. We describe the joint geometry, material models and the analysis of
the elastic/viscoelastic joint. The numerical method used in the present analysis is then discussed. The
results are presented, and the solution of the interfacial stresses is used to explain the modes of failure
observed in some industrially relevant elastic/viscoelastic joints.

2. The near-corner stress and displacement solutions for elastic/elastic joints

Consider a bonded joint consisting of two elastic, isotropic and homogeneous solids, identi®ed as
materials 1 and 2, as shown in Fig. 1. The intersection of the interface with the unbonded boundaries of
the materials is referred to as the interface corner and denoted by A and B in Fig. 1. The mismatch of
the elastic properties between the two materials are characterised by the Dundurs parameters a and b,
which are de®ned for plane strain conditions by (Dundurs, 1969)

a � m1�1ÿ n2� ÿ m2�1ÿ n1�
m1�1ÿ n2� � m2�1ÿ n1� ; b � m1�1ÿ 2n2� ÿ m2�1ÿ 2n1�

m1�1ÿ n2� � m2�1ÿ n1� �1�

where the subscripts denote the material number and, m and n are the shear modulus and Poisson's
ratio, respectively.

A stress singularity may develop at the interface corners when the joint is subjected to mechanical or
thermal loading. The stress and displacement ®elds near an interface corner, which are generally
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obtained using either the complex variable method or the Airy's stress function approach, can be
expressed as

smij � H rlÿ1f m
ij � s�f m

ijo

umi �
1

2mm

�
H rlgmi � s�r gmio

�
�2�

where m (= 1, 2) is the material number; �i, j � � �r, y� are polar co-ordinates centred at the interface
corner; lÿ 1 is the order of the stress singularity; H is the edge intensity factor; fij, gi, fijo and gio, are
the non-dimensional functions of the material parameters �a, b), polar co-ordinate y and of the joint
geometry; and s� is a characteristic measure of the applied load. The closed form expressions for the
non-dimensional functions are available in the literature for a range of elastic/elastic joint geometries
and loading; see, for example, Bogy (1970), Yang and Munz (1997), Akisanya and Fleck (1997) and
Qian and Akisanya (1999). The second terms in Eq. (2) are the non-singular constant stress and the
associated displacement; these functions vanish for remote mechanical loading and have ®nite values for
uniform change in temperature (Munz et al., 1993) or local edge traction in the vicinity of the interface
corner. The stress and displacement solutions in Eq. (2) must satisfy the continuity conditions at the
interface (i.e. y � g and also the traction conditions near the interface corner, i.e. at y �2p=2:

The intensity of the singularity H is determined by combining the asymptotic solution in Eq. (2) with
a numerical method like the ®nite element or the boundary element method. The magnitude of H
depends on the details of the joint geometry, the material parameters �a, b� and on the magnitude of the
applied loading. The order of the stress singularity is evaluated by solving a characteristic equation
whose details depend on the joint geometry. For example, for a joint with an interface inclined at an
angle g to the x-axis as shown in Fig. 1, the characteristic equation is given by (Bogy, 1970; Qian and
Akisanya, 1999)

sin2lp� 2
ÿ
2l2 cos2gÿ 1

�
a sin lp sin 2lgÿ 4l2b sin lp sin 2lg cos2g

� 4l2 cos 2g
ÿ
1ÿ coslp cos 2lgÿ 2l2 cos 2g

�
ab�

h
sin 22lg� 4l2

ÿ
l2 ÿ 1

�
cos2gÿ l4 sin22g

i
a2

�
�
4l2 cos2g

ÿ
l2 cos2gÿ 1� cos lp cos 2lg

�
� �cos lpÿ cos 2lg�2

�
b2 � 0 �3�

Fig. 1. A typical bi-material joint.
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There may be more than one value of l that satis®es Eq. (3). In this case each one will have its own
associated intensity factor and, therefore, contribute to the edge ®eld. l may be real or complex, and the
values of l in the range 0 < Re�l� < 1 result in a singularity of the form described by Eq. (2). For
complex l, the associated intensity H is also complex and the corresponding asymptotic expressions for
the stresses and displacement are di�erent from those given in Eq. (2). The stresses associated with
complex l alternate between negative and positive values very close to the singular point (Yang and
Munz, 1995).

We shall make use of the elastic±viscoelastic correspondence principles and the solutions of the
elastic/elastic joint described above to obtain the corresponding edge stress and displacement solutions
for an elastic/viscoelastic joint subjected to edge tractions.

3. Formulation of the problem

3.1. Geometry

The joint geometry considered in this paper is shown in Fig. 2. It consists of a viscoelastic layer
(material 2) sandwiched between two identical elastic solids (material 1). The joint is of length L and
height h, where L� h: The interfaces between the elastic materials and the viscoelastic layer intersect
the traction-free or the loaded surfaces of the bonded materials at interface corners A, B, C and D.
Rectangular Cartesian (x, y ) and plane polar co-ordinates �r, y� placed at interface corner A are used to
describe the stresses and the local geometry near the interface corner, as shown in Fig. 2(b). The
interfaces are inclined at an angle g with respect to the x-axis. Therefore, in the vicinity of an interface

Fig. 2. (a) An elastic/viscoelastic joint geometry subjected to surface traction. (b) The details of the loading and local geometry

near interface corner A.
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corner, say A, the region ÿg < yRp=2 is within the elastic material 1 while ÿp=2Ry < ÿg is within the
viscoelastic material 2.

We assume in this analysis that the materials are perfectly bonded along the interfaces; the application
of the results to the analysis of crack growth near the interface corner will be discussed later in the
paper. For all the joint angles g considered, the total length of the joint L is much greater than the
smallest thickness of the viscoelastic layer DB, and DB >> h. As such only one length scale in the
geometry appears in the solutions, and that is the joint width h.

Without loss of generality, we consider only edge loading near interface corner A. The joint is
subjected to one or a combination of the edge loading of magnitudes n1, n2, s1, and s2 in the vicinity of
interface corner A as shown in Fig. 2(b). Here, n1 and n2 are the magnitudes of the uniform edge
normal load on materials 1 and 2, respectively, while s1 and s2 are the corresponding magnitudes of the
uniform edge shear load. The width of the loading on material 1 is denoted by a, and that on material 2
is denoted by b.

The joint geometry shown in Fig. 2 with g � 0 is similar to that currently used in many asphaltic plug
joints, where a composite mixture of rubberised bitumen and aggregates is sandwiched between concrete
bridge decks in highway bridges. The bridge deck response is approximately elastic while that of the
bitumen/aggregate mixture is viscoelastic. Asphaltic plug joints experience surface tractions resulting
from the weight of the moving vehicles on the bridge. The results of the analysis to be presented in this
paper will show that a better stress distribution and hence an increase in the service life of such joints
can be obtained by appropriate selection of the joint angle.

3.2. Material model

We assume in the current analysis that material 1 is elastic, isotropic and homogeneous with the
following time-independent material properties: shear modulus, m1o, bulk modulus K1o and Poisson's
ratio n1o: Only two of these three properties are independent. However, material 2 is assumed to be
isotropic and linear viscoelastic. As such both strain and strain rates are in®nitesimal, and the ratio of
stress to strain is a function of time only and not of stress magnitude. Furthermore, with the exception
of the viscoelastic stress±strain relations, which di�er from those of the corresponding in®nitesimal
elasticity theory, all other governing equations follow directly from the theory of linear elasticity but
with proper cognisance taken of the time-dependent nature of all the variables.

The stress±strain relation for the linear viscoelastic material 2, which is based on the principle that the
e�ects of sequential changes in strains are additive, is of the form (Christensen, 1971)

sij�t� �
�t
ÿ1

�
m2�tÿ t�

�
@eij
@t
ÿ 1

3
dij
@ekk
@t

�
� 3

2
K2�tÿ t�

�
1

3
dij
@ekk
@t

��
dt �4�

where the integration is carried out over all past times t up to the current time t; dij is the Kronecker
delta, and m2�t� and K2�t� are the shear and volumetric relaxation moduli, respectively. In the current
analysis we assume the solid shear relaxation modulus m2�t� is described by

m2�t� � g1 � g2 exp� ÿ t=to� �5�
where to is the relaxation time, and g1 and g2 are positive material constants. The shear relaxation
function given by Eq. (5) is consistent with that for a Voigt model and a spring in series. For linear
viscoelastic deformation where extremely small changes in volume occurs, the volumetric relaxation
modulus is assumed to remain constant throughout the deformation, i.e

K2�t� � K2o �6�
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It is evident from Eq. (5) that

m2�0� � g1 � g2

m2�1� � g1 �7�
The evaluation of the time-dependent Poisson's ratio of the viscoelastic material n2�t� is discussed next.

3.3. Material elastic/viscoelastic mismatch parameters

The stress and displacement solutions near the interface corner A depend on the mismatch of the
elastic and viscoelastic properties of the bonded materials. The governing equations for linear
viscoelastic material can be obtained from the corresponding equations for elastic material by making
use of the elastic±viscoelastic correspondence principles (Christensen, 1971). Here the variables in the
equations for elastic solids (including the elastic constants) are replaced by the Laplace transform of the
variables multiplied by the transform parameter. The equivalent viscoelastic equations in the time
domain are then obtained by inverting the transforms. The time-dependent Dundurs' parameters have
been obtained using this method.

The transformed material mismatch parameters �a�p� and �b�p�, where p is the Laplace transform
parameter, are obtained by replacing the elastic constants in Eq. (1) with the Laplace transform of the
corresponding parameter multiplied by p. Here and thereafter, a variable with overbar is the Laplace
transform of the corresponding variable without overbar. For the elastic/viscoelastic joint under
consideration, the transformed materials mismatch parameters �a�p� and �b�p� are given by

�a�p� � 1

p

"
m1o
ÿ
1ÿ p�n2�p�

�ÿ p �m2�p��1ÿ n1o�
m1o
ÿ
1ÿ p�n2�p�

�� p �m2�p��1ÿ n1o�

#

�b�p� � 1

p

"
m1o
ÿ
1ÿ 2p�n2�p�

�ÿ p �m2�p��1ÿ 2n1o�
m1o
ÿ
1ÿ p�n2�p�

�� p �m2�p��1ÿ n1o�

#
�8�

where m1o and n1o are the time-independent shear modulus and Poisson's ratio of the elastic material 1,
respectively and, �m2�p� and �n2�p� are the transformed shear relaxation modulus and Poisson's ratio of the
viscoelastic material 2. It can be shown from Eqs. (5)±(7) and the standard elasticity equation relating
Poisson's ratio to the shear and bulk moduli, that

�m2�p� �
pm2�0� � m2�1�=to

p�p� 1=to� �9�

and

�n2�p� �
p to

�
3K2o ÿ 2m2�0�

�� �3K2o ÿ 2m2�1�
�

2p2to
�
3K2o � 2m2�0�

�� 2p
�
3K2o � 2m2�1�

� �10�

The elastic±viscoelastic mismatch parameters and Poisson's ratio of the viscoelastic material in the time
domain can now be obtained by inverting Eqs. (8) and (10). The closed form expressions for a�t�, b�t�
and n2�t� are given in Appendix A.

The order of the singularity �l�t� ÿ 1� for the elastic/viscoelastic joint is determined following similar
elastic±viscoelastic correspondence principles described above. First the transformed characteristic
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equation is obtained by replacing the elastic mismatch parameters a and b in Eq. (3) with the
corresponding transformed parameters �a�p� and �b�p�, multiplied by p, and then inverting. The resulting
characteristic equation in the time domain is given in Appendix B. The numerical solution of this
transcendental equation gives the values of l�t�: For some values of elastic and viscoelastic material
constants there may be more than one value of l�t�, and l�t� may even be complex. However, in this
paper we have focused mainly on real values of l�t� and solutions have been obtained only for the
smallest value of l�t� in the range 0 < Re�l�t�� < 1:

4. The elastic/viscoelastic asymptotic solution

The asymptotic stress and displacement solutions near the interface corner of an elastic/elastic joint
are given by Eq. (2). The determination of the solutions for elastic/viscoelastic joints by making use of
the correspondence principles leads to very complicated expressions, and analytical inversion of the
transforms may be very di�cult. The asymptotic stress and displacement ®elds in the time domain for
the elastic/viscoelastic joint geometry shown in Fig. 2 have been determined using the elastic±viscoelastic
correspondence principles described in Section 3, the viscoelastic material behaviour given in Eqs. (5)±
(7), and the solutions for elastic/elastic joints in Eq. (2). The asymptotic stress at a distance r from the
interface corner A can be written as

smij �t� � H�t�rl�t�ÿ1F m
ij �t� � s�F m

ijo�t� �11�

where, as before, m (= 1, 2) is the material number �i, j � � �r, y� are plane polar co-ordinates centred at
the interface corner A in Fig. 2; and s� is a characteristic measure of the applied stress. For the joint
geometry shown in Fig. 2, s� has a magnitude of n1, n2, s1, or s2 depending on which of the edge loads
is applied. The ®rst and second terms in Eq. (11) are the inverse of the corresponding transformed terms
in Eq. (2). Numerical inversion using Jacobi polynomials (Miller and Guy, 1966) was used to obtain the
®rst term in Eq. (11). This method does not require the evaluation of the transformed function in the
complex p-plane. The analytical inversion of the transformed second term of Eq. (2) is complicated but
not impossible; the term s�Fijo�t� obtained by analytically inverting the corresponding transform in Eq.
(2) is given in Appendix C.

Both functions Fij and Fijo depend, in addition to the loading time t, on the elastic and viscoelastic
constants �m1o, n1o, g1, g2, K2o), the polar co-ordinates y and the joint angle g: The stress solutions given
by Eq. (11) satisfy the stress continuity conditions at the interface �y � g and the traction boundary
conditions at y �2p=2, at any time t. The only unknown parameter in Eq. (11) is the time-dependent
edge intensity factor H�t�, which is de®ned such that Fyy�t� � 1 along the interface �y � g�, and is given
by

H�t� � h1ÿl�n1a1 � n2a2 � s1a3 � s2a4 � �12�
where h is the joint width; n1, n2, s1, and s2 are the magnitudes of the edge loading (see Fig. 2(b)); and
aj �j � 1, 4� are the non-dimensional constant functions of time t, joint angle g and the elastic and
viscoelastic material constants �m1o, n1o, g1, g2, K2o). The de®nition of H�t� given by Eq. (12) suggests it
must have units of (stress)�length�1ÿl: In the following section we describe how we have evaluated H�t�
for the joint geometry shown in Fig. 2 and representative values of the material constants �m1o, n1o, g1,
g2, K2o).
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5. Numerical analysis

We evaluate the non-dimensional constants aj �j � 1, 4� for each of the four load cases of the elastic/
viscoelastic joint shown in Fig. 2, using a combination of a contour integral and the ®nite element
method. This method, which is based on Betti's reciprocal law for viscoelastic solids (Christensen, 1971)
and gives a path-independent integral, involves a convolution of the singular component of the
asymptotic ®eld (11) with a ®nite element solution. A full description of the evaluation of edge intensity
factor for elastic/elastic joints using this method is available in Akisanya and Fleck (1997).

A detailed ®nite element analysis of the elastic/viscoelastic joint shown in Fig. 2 was performed using
the ABAQUS (1997) ®nite element code. The joint height h was chosen as unity while the length of the
joint was L � 51h: The largest thickness of the viscoelastic layer AC was kept at 7h. However, the
smallest thickness of the layer DB varied depending on the joint angle g which had values of g � 0, 15,
30 and 458. The width of the loading was a � b � h: Plane strain conditions were assumed in the
analysis. The geometry was discretised using eight-node quadrilateral isoparametric elements.

Numerical solutions were obtained for representative material properties based on the linear
viscoelastic material model characterised by Eqs. (4)±(7). The linear viscoelastic material properties used
in the analysis were m2�0� � 67:5 GPa, m2�1� � 6:75 GPa, n2�0� � 0:48, and n2�1� � 0:498, and K2o �
1665 GPa. The properties of the elastic material were, m1o � 338 GPa and n1o � 0:33: The volumetric
relaxation modulus K2o of the viscoelastic material was kept constant throughout the analysis. The
normalised shear relaxation modulus, m2�t�=m2�0�, and Poisson's ratio, n2�t�, of the viscoelastic material 2
are shown in Fig. 3(a) as a function of the normalised time t=to: We assume to � 1 min in the current
analysis. The magnitude of m2�t�=m2�0� decreases while n2�t� increases, with increasing normalised time.

The non-dimensional material parameters a�t� and b�t� corresponding to the representative values of
the material properties stated above were obtained using Eqs. (A2) and (A3); they are shown in
Fig. 3(b). The magnitude of a�t� increases while that of b�t� decreases with increasing normalised time
t=to: Typical values of a�t� and b�t� are: �a�0�, b�0�� � �0:62, ÿ0:016� and �a�10to�, b�10to�� � �0:95,
ÿ0:002�: We note, however, that the values of b�t� for the typical elastic and viscoelastic properties
considered here are quite small. There is, therefore, the temptation of assuming, b � 0 as is usually done
under similar situation in interfacial fracture mechanics, where such assumption is used to avoid the
complications associated with near-tip oscillating stress, with little or no e�ect on the interfacial stress
intensity factor (Rice, 1988). However, such an approximation would be inappropriate in edge
singularity analysis without any loss of accuracy since the material parameter b has a signi®cant e�ect
on the magnitude of both H and l:

In the numerical analysis, solutions of the edge stresses are obtained for the edge loads n1, n2, s1, and
s2 in the vicinity of interface corner A as shown in Fig. 2(b). The loads are applied statically one at a
time. The magnitude of the applied load is then kept constant while the level of the resulting
deformation is monitored; this is analogous to an indentation creep test. In the following we shall
present the solutions for the edge intensity factor H�t� and the corresponding evolution of stresses for
each of the four load cases.

6. Results and discussion

6.1. Order of the stress singularity

The singular part of the stresses in the vicinity of the applied edge load for the joint geometry shown
in Fig. 2 depend on the edge intensity factor H�t� and the order of the singularity �l�t� ÿ 1� as given by
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Eq. (11). The order of singularity for the representative material properties obtained by using Eq. (B1) is
shown in Fig. 4 for a range of joint angles g:

As expected, joints with g � 0 are more singular than those with g > 0; the level of singularity
decreases with increasing magnitude of g: The value of �l�t� ÿ 1� decreases with increasing time
suggesting the stress ®eld near the interface corner of the elastic/viscoelastic joint becomes more singular
with increasing time. This is consistent with the evolution of the material parameter a�t� with time (see
Fig. 3); the magnitude of a�t� increases with increasing loading time indicating an increase in the degree
of mismatch in the elastic and the viscoelastic properties of the bonded materials.

The stresses near the interface corner of viscoelastic joints subjected to a constant remote transverse
strain have been shown to relax (i.e. decrease in magnitude) with increasing time (Lee, 1998). In
contrast, however, the increase in the level of stress singularity with increasing time observed for this
creep-like loading might suggest an increase in the magnitude of the stresses in the vicinity of the load
with increasing time. However, the e�ects of this observation on the magnitude of the stresses can only
be quanti®ed if the evolution of both H�t� and l�t� is known, since the stresses depend, among other
things, on the magnitude of these parameters.

We note also in Fig. 4 that the e�ect of the loading time on l�t� decreases with increasing magnitude
of g: The values of l�t� for g � 458 are almost independent of time, they remain roughly constant with
l�t�11; the stress ®elds associated with l�t�r1 are non-singular.

Fig. 3. (a) The normalised shear relaxation m2�t�=m�0� and Poisson's ratio n2�t� of the viscoelastic material 2 as a function of nor-

malised time. (b) The elastic/viscoelastic material mismatch parameters a�t� and b�t� as a function of time.
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6.2. The edge intensity factor H�t�

The intensity H�t� depends on the magnitude of the applied edge loads n1, n2, s1, and s2, and the joint
geometry via the non-dimensional constants a1, a2, a3 and a4 as stated in Eq. (12). The values of these
constants are shown in Fig. 5 for joint angles g � 0, 15 and 308. Recall that the non-dimensional
constants a1 and a2 are associated with edge normal loads n1, on the elastic material 1 and n2 on the
viscoelastic material 2, respectively. Similarly, a3 and a4 are associated with edge shear loads s1 on the
elastic material 1 and s2 on the viscoelastic material 2, respectively.

For all the joint angles considered, the magnitudes of all of the non-dimensional constants decrease
with increasing time; the rate of decrease is higher at small joint angles than at large joint angles. The
e�ect of this on the magnitude of H�t� and the edge stresses is not obvious, since they both depend on
the time-dependent order of the stress singularity �l�t� ÿ 1]. The evolution of �l�t� ÿ 1� shown in Fig. 4
suggests the edge stresses should become more singular (and hence increase in magnitude) as the loading
time increases, while the evolution of each of the non-dimensional constants (Fig. 5) suggests a decrease
in the magnitude of the stresses with increasing time. Therefore, the variation of the singular part of the
edge stresses with time would be determined by the more dominant of these two competing e�ects. The
magnitude of the total edge stress is, however, the sum of this singular part and the uniform constant
stress ®eld s�Fijo�t� (see Eq. (11)).

There are two important features of the results shown in Fig. 5. First, the magnitudes of the non-
dimensional constant a3 and a4 associated with edge shear loads s1 and s2 are signi®cantly greater than
those of a1 and a2 which are associated with edge normal loads n1 and n2: This shows that the stresses
resulting from the application of edge normal and shear loads of the same magnitude to one of the
materials near the interface corner of an elastic/viscoelastic joint are dominated mainly by the shear
load.

Secondly, the magnitudes of the constants associated with the loads on the elastic material 1 (i.e, a1
and a3� are much smaller than those associated with the loads on the softer viscoelastic material (i.e. a2
and a4). This is not surprising since the sti�er elastic material is expected to take a greater share of the
load applied on it. Further, the non-dimensional constants a1 and a4 associated with normal load on the
elastic material 1 and shear load on the viscoelastic material 2, respectively are negative while a2 and a3
associated with normal load on the viscoelastic material 2 and shear load on the elastic material 1 are
positive. This shows that the singular component of the stresses near the interface corner undergoes a
reversal as the edge load (normal or shear) is moved from one side of the corner to the other.

Fig. 4. The evolution of the order of the singularity �l�t� ÿ 1� for the elastic/viscoelastic joint geometry.

Z.Q. Qian et al. / International Journal of Solids and Structures 37 (2000) 5973±5994 5983



6.3. Interfacial stresses near the loaded interface corner

The ®nite element solution of the total stress component syy�t� along the interface �y � g� is shown in
Fig. 6 as a function of the relative distance r/h from the interface corner A, for each of the four load
cases. Here the stress is normalised by the magnitude of the appropriate edge load and the radial
distance r is normalised by the joint height h. Recall that the total stress near the interface corner
consists of two parts: a singular part characterised by l�t� and H�t�, and a uniform constant stress
s�Fijo�t� where s� is the magnitude of the applied edge load and Fijo�t� are de®ned in Appendix C.
As expected, the magnitude of syy along the interface decreases with increasing joint angle g, for all

load cases. We note that the magnitude of syy along the interface relaxes (i.e. decreases with time) when
the load (normal or shear) is applied to the elastic material 1 (see Fig. 6(a) and (c)). However, the
interfacial stress component syy increases when the load is applied to the viscoelastic material 2 (Fig. 6(b)
and (d)).

Let us ®rst consider the situation where the load is applied on the viscoelastic material. The shear
relaxation modulus of the viscoelastic material decreases with time as shown in Fig. 3. Consequently,
the deformation of the viscoelastic material is expected to increase with time when a constant load is
applied to it. The presence of the elastic material restricts the lateral deformation and prevents the free
¯ow of the viscoelastic material, resulting in the development of a "back stress" at the interface. The
magnitude of this stress should increase with time as the magnitude of lateral viscoelastic deformation to
be restricted by the elastic material increases; this is consistent with the ®nite element solutions shown in
Fig. 6(b) and (d).

Fig. 5. The e�ects of joint angle g, and loading time on the non-dimensional constants aj �j � 1, 4� (a) a1, (b) a2, (c) a3 and (d) a4:
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However, when the load is applied to the elastic material, the lateral deformation of the elastic
material is small and does not change with time. Because the viscoelastic material is much "softer" than
the elastic material, there is little or no restriction on the lateral deformation of the elastic material due
to the presence of the viscoelastic material. Therefore, the magnitude of the interfacial stresses at the
onset of loading t=to � 0 when the load is applied on the elastic material is expected to be lower than
when the loading is applied on the viscoelastic material. This is consistent with the results shown in
Fig. 6. Since the lateral deformation of the elastic material in this case does not change with time, the
viscoelastic material is e�ectively subjected to a constant lateral strain at the interface between the two
materials. This is equivalent to a relaxation test. The time-dependent deformation of the viscoelastic
material, therefore, results in the relaxation of the interfacial stresses in order to maintain the constant
level of lateral deformation in the elastic material, see Fig. 6(a) and (c).

Another observation from the ®nite element solutions of the interfacial stress component syy shown in
Fig. 6 is that the stress changes sign as the edge load (normal or shear) is moved from one side of the
interface corner to the other. This e�ectively subjects the interface to fatigue loading which may
subsequently lead to fatigue failure in situations where the load moves from one side of the interface
corner to the other, for example in rolling and sliding contacts.

The numerical results shown in Fig. 6 are for the individual load cases. If, however, the joint is
subjected to a combination of any of these load cases or the applied load is changed after a given time
has elapsed, the corresponding results can be obtained by making use of Boltzmann superposition

Fig. 6. The normalised interfacial stress component �syy=s� as a function of the normalised radial distance r/h and time t=to: Here

h is the height of the joint and s� is the magnitude of the edge loading. (a) s� � n1, (b) s� � n2, (c) s� � s1, and (d) s� � s2:
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principles (Christensen, 1971). A consequence of the Boltzmann superposition principles is that the
deformation of a linear viscoelastic material is directly proportional to the applied stress when all the
deformations are compared at equivalent time; the e�ect of di�erent loads is additive. This is di�erent
from the conventional superposition procedures for in®nitesimal deformation of a linear elastic material,
because it takes account of the previous load (or deformation) history of the material, as re¯ected in the
stress±strain relation of Eq. (4).

Interfacial fracture and crack growth are controlled by the ratio of shear stress to the normal stress
along the interface. The increasing magnitude of the shear stress increases the likelihood of edge
debonding in bonded joints and delamination in laminated composites. The ratio of the interfacial shear
stress sry to the normal stress syy for the elastic/viscoelastic joint geometry under consideration is shown
in Fig. 7, for each of the four load cases. When the load is on the elastic material 1 (i.e. Fig. 7(a) and
(c)) the stress ratio is negative with a magnitude which remains approximately constant up to a distance
r � 0:01h, after which the magnitude decreases rapidly with increasing distance from the interface
corner. As expected the magnitude of the stress ratio increases with increasing joint angle g:

The results of the stress ratio �sry=syy� when the load is on the linear viscoelastic material 2 are shown
in Fig. 7(b) and (d). For normal load n2, the magnitude of the stress ratio for g � 308 decreases
monotonically with increasing distance from the interface corner while that for g � 0 and 158 increases
initially up to a distance r � 0:01h, after which the stress ratio changes sign and subsequently decreases
in magnitude with distance. However, the magnitude of the stress ratio for a shear load s2 on the
viscoelastic material (Fig. 7(d)) decreases with increasing distance from the interface corner.

It is important to point out that the results shown in Fig. 7 are the interfacial stress ratio �sry=syy�
near the interface corner in the absence of any edge crack. The results can, therefore, be used in
conjunction with an appropriate failure criterion to assess the likelihood of failure initiation. Stress
redistribution will occur upon the initiation of an edge crack, and the magnitude of the stress ratio
ahead of the crack may be di�erent from those shown in Fig. 7.

7. Application to joint design and failure

One of the main objectives in the design of bonded joints is to minimise the edge stresses. This can be
accomplished by choosing either the materials and joint geometry which ensure the magnitude of l is
very close to, or greater than 1; or the magnitude of the applied load and the joint geometry which
minimises the magnitude of the intensity H. It is however di�cult, if not impossible, to completely
eliminate stress singularities in bonded joints and sandwich structures, especially for elastic/viscoelastic
joints where the values of both l and H change with time. Therefore, in the design of such joints, the
evolution of both l and H over the duration of loading (as determined in this paper) needs to be
considered before deciding on which joint geometry or loading satis®es the objectives stated above.

There are limited experimental data to support the idea that failure initiates at an interface corner
when the magnitude of intensity H attains a critical value. This critical value is generally determined by
experiments (see for example, Fett, 1996; Qian and Akisanya, 1998a), but requires an appropriate
calibration for H as determined in this paper for elastic/viscoelastic joints. Once such failure occurs and
the size of the crack is much smaller than the extent of the elastic edge singularity, the growth of the
crack is controlled by the magnitude of the intensity H of the edge singularity. The coupling between
the crack tip stress intensity factors for edge cracks embedded within an edge singularity and the
intensity H of the singularity has been obtained by Akisanya and Fleck (1997) for elastic/elastic butt
joints and by Liu and Fleck (1998) for elastic/elastic scarf joints. These solutions can be applied to the
elastic/viscoelastic joint under investigation and used to determine the evolution of the crack tip stress
intensity factor with time for a short crack near the interface corner.
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We have shown earlier that the alternation of the edge loading between the two bonded materials
results in interfacial stress reversal and the possibility of fatigue failure. The continuous growth of such
failure, if it occurs, depends on the properties of the materials including the toughness of the interface.
For elastic/viscoelastic joints subjected to cyclic alternation of edge loading between the bonded
materials as in asphaltic plug joints used in highway bridges, the progressive accumulation of
deformation in the viscoelastic material may actually result in the healing of the fatigue crack at
moderate temperatures. However, at very low temperatures when the viscoelastic material behaves more
like an elastic brittle material, progressive fatigue crack propagation near the edge may occur. The range
and mean of the alternating stress can be signi®cantly reduced by appropriate choice of the joint angle g:

8. Conclusions

The stress ®eld near the interface corner of an elastic/viscoelastic joint subjected to edge traction
in the vicinity of the corner has been determined using elastic±viscoelastic correspondence principles.
A linear viscoelastic material model is assumed and a combination of asymptotic analysis and the
®nite element solutions was used to obtain the stresses near the loading. The time-dependent stresses
near the interface corner where the load is applied has been shown to be of the form

Fig. 7. The ratio of shear to normal stress �sry=syy� at the interface as a function of the relative distance from the interface corner

r/h, and normalised loading time t=to, for (a) normal load n1, (b) shear load s1, (c) normal load n2 and (d) shear load s2:
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sij�t� � H�t�rlÿ1Fij�t� � s�Fijo�t�, where r is the radial distance from the corner and s� is a measure of the
applied load. The solutions of the intensity H�t�, order of stress singularity l�t� ÿ 1 and the non-
dimensional function Fijo�t� have been presented in the paper for a range of joint angles and normal and
shear edge loadings.

The numerical results show that a large stress gradient exists near the loaded interface corner.
Further, the magnitude of the interfacial stress component syy near the loaded edge increases with time
if the loading is on the viscoelastic material, while it decreases with time (i.e. relaxes) if the loading is on
the elastic material. The movement of the edge loading from one side of the interface corner to the
other, which is typical of sliding and rolling contacts, subjects the interface to a stress reversal and,
therefore, increases the possibility of failure by fatigue.
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Appendix A

Poisson's ratio of the viscoelastic material 2 in the time domain obtained by analytically inverting the
corresponding transform in Eq. (10) is given by
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The elastic/viscoelastic materials mismatch parameters a�t� and b�t� in the time domain are given by
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Appendix B

The characteristic equation in the time domain for the elastic/viscoelastic joint shown in Fig. 2 is
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Appendix C

The constant stress ®eld can be expressed in the form sijo � s�Fijo�t� where �i, j � � �r, y� are plane
polar co-ordinates centred at the interface corner, s� is one or a combination of the edge loads n1, n2,
s1, s2, and Fijo are non-dimensional constant function of the materials elastic constants, polar co-
ordinate y, and of the joint angle g: The individual components of the stresses are given by
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s1ryo � 2 sin 2y �M1 � �1ÿ p sin 2y� cos 2y�M2 � n1 sin 2yÿ s1 cos 2y �C1c�

s2
rro � 2�1ÿ cos 2y�N1 � �sin 2yÿ 2yÿ p cos 2y�N2 ÿ n2 cos 2yÿ s2 sin 2y �C1d�

s2
yyo � 2�1� cos 2y�N1 ÿ �2y� sin 2yÿ p cos 2y�N2 � n2 cos 2y� s2 sin 2y �C1e�

s2
ryo � 2 sin 2y �N2 � �1� p sin 2y� cos 2y�N2 � n2 sin 2yÿ s2 cos 2y �C1f�

where the superscript denotes the material number; M1, M2, N1 and N2 are constant functions which
depend on the applied surface tractions, the material properties and the joint angle g, and are given by,
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4m1o�pi � 1=to��x3pi � x2=to� exp�pit�=Yi �C6�

Q2 �
X5
i�1

8m1o�x3pi � x2=to��x4pi � x1=to�
hÿ
m1o ÿ m2�0�

�
pi �

ÿ
m1o ÿ m2�1�

�
=to
i
�pi � 1=to� exp�pit�

Zi

�C7�

Q3 �
X5
i�1

32m1o�1ÿ n1o�
�
m2�0�pi � m2�1�=to

��x3pi � x2=to� 2�pi � 1=to� exp�pit�
Zi

�C8�

Q4 �
X5
i�1

16�1ÿ n1o�
�
m2�0�pi � m2�1�=to

�hÿ
m1o ÿ m2�0�

�
pi �

ÿ
m1o ÿ m2�1�

�
=to
i
�x4pi � x1=to� 2 exp�pit�

Zi

�C9�

Q5 �
X3
i�1

8�1ÿ n1o��x4pi � x1=to �
�
m2�0�pi � m2�1�=to

�
exp�pit�

Yi
�C10�

Z.Q. Qian et al. / International Journal of Solids and Structures 37 (2000) 5973±59945992



p1 � 0; p2 �
ÿS1 �

�������������������������
S 2

1 ÿ 4R1T1

q
2R1

; p3 �
ÿS1 ÿ

�������������������������
S 2

1 ÿ 4R1T1

q
2R1

�C11a�
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S 2
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q
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�C11b�

R1 � 2m1ox3b�pÿ 2g� sin 2gÿ 4 cos 2gc � 4m2�0�x4�1ÿ n1o�b�p� 2g� sin 2g� 4 cos 2gc �C12�

R2 � 6m1om2�0� ÿ 2m1ox4 cos 2gÿ m2�0�x4�2ÿ 4n1o ÿ 2 cos 2g� �C13�

S1 � 4m1o
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x3 ÿ 2m2�0� � 2m2�1�

���pÿ 2g� sin 2gÿ 4 cos2g
�
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�
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���p� 2g� sin 2g� 4 cos2g

�o
�C14�

S2 � 6m1o
ÿ
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�ÿ 2m1o�x1 � x4� cos 2gÿ ÿm2�0�x1 � m2�1�x4
��2ÿ 4n1 ÿ 2 cos 2g�

to
�C15�

T1 � 2m1ox1b�pÿ 2g� sin 2gÿ 4 cos2gc � 4�1ÿ n1o�m2�1�x1b�p� 2g� sin 2g� 4 cos 2gc
t 2o

�C16�

T2 � 6m1om2�1� ÿ 2m1ox1 cos 2gÿ m2�1�x1�2ÿ 4n1o ÿ 2 cos 2g�
t2o

�C17�

Y1 � 4T1; Y2 � 4p2�2R1p2 � S1�; Y3 � 4p3�2R1p3 � S1� �C18�

Z1 � 4T1T2; Z2 � 4p2�2R1p2 � S1�
ÿ
R2p

2
2 � S2p2 � T2

� �C19�
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2
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� �C20�
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4 � S1p4 � T1

�
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Z5 � 4p5
ÿ
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2
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�
�2R2p5 � S2 � �C22�

The parameters x1, x2, x3, and x4 are de®ned in Eq. (B8).
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